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Determining the effect of structural perturbations on the eigenvalue spectra of networks is an important
problem because the spectra characterize not only their topological structures, but also their dynamical behav-
ior, such as synchronization and cascading processes on networks. Here we develop a theory for estimating the
change of the largest eigenvalue of the adjacency matrix or the extreme eigenvalues of the graph Laplacian
when small but arbitrary set of links are added or removed from the network. We demonstrate the effectiveness
of our approximation schemes using both real and artificial networks, showing in particular that we can
accurately obtain the spectral ranking of small subgraphs. We also propose a local iterative scheme which
computes the relative ranking of a subgraph using only the connectivity information of its neighbors within a
few links. Our results may not only contribute to our theoretical understanding of dynamical processes on
networks, but also lead to practical applications in ranking subgraphs of real complex networks.
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I. INTRODUCTION

The theory and application of complex networks have
been a popular and exciting research topic since the seminal
work �1,2� appeared at the end of last century. The study of
complex networks interests a variety of fields, such as math-
ematics, physics, computer science, sociology, and biology,
to list a few. �For excellent reviews, see for example Refs.
�3–5�.� One of the most important problems in complex net-
works, both from a theoretical and applicative viewpoint, is
that of measuring centrality. Various measures of centrality
have been proposed based on different quantitative proper-
ties of the underlying network. Examples are degree central-
ity, shortest path, and random walk betweenness, clustering
coefficient and eigenvector component �4,6�. Common appli-
cations of such measures is the ranking of vertices of the
network, in particular in the context of web search engines
�7,8�. Many of these centrality measures are connected with
the spectral radius of the adjacency matrix of the graph; fur-
thermore, the spectral radius itself is crucial for a class of
dynamical processes on networks �5,9–11�.

A fundamental question in the study of networks is then
how the spectral radius and other invariant network statistics
change under structural perturbations, such as the removal or
addition of a few links, or the modification of their strength.
This question is particularly relevant in the context of evolv-
ing networks, since the stepwise changes in such networks
are typically small, and developing efficient algorithms to
track the corresponding changes in network statistics is cru-
cial in understanding the dynamics of network evolution
�12�. The effect of structural perturbations on the spectral

radius as well as other network statistics has significant con-
sequences for the security and robustness of networked sys-
tems under component failures and intentional attacks.

Let G= �V ,E ,Q� be a weighted graph, where V is the set
of vertices, E the set of directed edges and Q the set of
weights on the edges. For convenience, we label the vertices
in V with integers 1 , . . . ,n. Let A�Rn�n be the adjacency
matrix of the graph, where its entry aij is defined as the
weight on the edge going from node i to node j. If A is
non-negative and irreducible, then the Perron-Frobenius
theorem �9,13� can be used to show that its largest eigen-
value � is nondegenerate and positive, and there exist posi-
tive left and right eigenvectors associated with it. In this
case, denote the normalized left and right eigenvectors by u
and v, respectively, �u ,v�Rn�, so that

uTA = �uT, Av = �v, �u�2 = �v�2 = 1. �1�

The condition of non-negativity is equivalent to requiring
non-negative weights on edges; on the other hand, the con-
dition of irreducibility corresponds to the graph being
strongly connected. In this paper, the graphs under consider-
ation all share these properties.

In Ref. �11� the dynamical importance Iij of an edge from
i to j was defined as the amount of relative decrease the
removal of this edge causes on �, i.e., if after removing such
an edge � becomes �−��ij, then Iij ���ij /�. Hence the dy-
namical importance of an edge quantitatively captures the
effect that the removal of such an edge has on the largest
eigenvalue of the graph adjacency matrix. An analogous
definition was introduced for the dynamical importance of
vertices, where Ik is the importance of node k. Approxima-
tions of these dynamical importances, based on perturbation
techniques, are given in Ref. �11�; in particular, Iij and Ik can
be approximated, respectively, by

Īij =
aijuiv j

�uTv
�2�

and
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Īk =
ukvk

uTv
, �3�

where ui and vi denote the ith component of the vectors u
and v, respectively.

In this paper, the notion of dynamical importance is ex-
tended to measure the spectral impact �14� of a structural
perturbation in which an arbitrary set of links are removed
or added, or their weights are modified. We define the spec-
tral impact �SI� as

IB �
��A+B − ��A

��A
, �4�

where A denotes the adjacency matrix of the original graph,
� �A is the corresponding spectral radius, while B is the adja-
cency matrix of the graph consisting of all the n nodes and
the links that are removed, added, or modified. Here a posi-
tive value of IB corresponds to an increase in �, and a nega-
tive value to a decrease. Note that in the case of removing a
subgraph of A, the entries of B will be nonpositive. In this
framework, the edge and vertex importance can be treated as
special cases. To enable efficient estimations of the spectral
impact, formulas based on the first and improved first-order
approximations are presented and discussed in detail. These
formulas lead to the observation that the degree centrality, as
a local measure, can be viewed as a first-order approximation
to the eigenvector centrality.

The rest of the paper is organized as follows. Section II
reports first- and second-order perturbation results to ap-
proximate the SI using global information on the graph; in
particular, the special cases of changing the weight on an
edge and removing a node are addressed. In Sec. III, appli-
cations to synthetic and real-world graphs are presented. Sec-
tion IV deals with estimating the SI using local information
on the network. While the majority of the results concerns
the spectral radius of the adjacency matrix of the graph, Sec.
V deals with an extension of our method to the graph La-
placian.

II. APPROXIMATING SPECTRAL IMPACT USING
GLOBAL INFORMATION

A. Perturbation results

Suppose a graph is modified so that its adjacency matrix
A becomes A+�C. Let � be the largest eigenvalue of A, and
�+�� the largest eigenvalue of A+�C. The change �� can
be estimated, when ��1, using a first-order perturbation re-
sult �13,15–17�, as

�� � �1 = ����A =
uT�Cv

uTv
, �5�

where �� �A denotes the derivative of �+�� as a function of
�, evaluated at �=0. Equation �5� shows that—at the first
order—the change in the largest eigenvalue is obtained from
the derivative �� �A, which depends on both A and C but can
be computed using the vectors u and v, and the matrix C. If
A is symmetric, u=v and Eq. �5� is of the Rayleigh quotient
form �17�.

For more accurate approximation, we can use a second-
order perturbation result,

�� � �1 + �2 = ����A +
�2

2
���A. �6�

Computing the second derivative term using known pertur-
bation results would require knowledge of all the eigenval-
ues and eigenvectors of A �15�. This is impractical. Hence, a
further approximation is introduced, as

���A �
���A+�C − ���A

�
. �7�

The term �� �A+�C takes into account the change in u and v, to
u+�u and v+�v, respectively. It is proposed here to esti-
mate v+�v by means of one iteration of the power method
�18�, starting from the unperturbed eigenvector v, as

v + �v �
�A + �C�v

��A + �C�v�2
=

�v + �Cv
��v + �Cv�2

=
�v + �Cv

	�2vTv + 2��vTCv + �2vTCTCv

�
�v + �Cv

�
, �8�

where � terms in the denominator have been neglected. Thus

�v �
�

�
Cv . �9�

Similarly, it can be found that

�u �
�

�
CTu . �10�

Therefore, the derivative �� �A+�C can be approximated as

���A+�C =
�u + �u�TC�v + �v�
�u + �u�T�v + �v�

�
uTCv
uTv

+
uTC�v

uTv
+

�uTCv
uTv

�
uTCv
uTv

+
2�

�

uTCCv
uTv

, �11�

having neglected terms containing �u and �v in the denomi-
nator, and the product �uTC�v in the numerator. Thus, an
improved approximation for �� is given by

�� � �1 + �2 �
uT�Cv

uTv
+

1

�

uT�2C2v
uTv

. �12�

The above formulas take advantage of the fact that in many
situations the eigenvector does not change much by the per-
turbation, and thus a few steps �one or two� of the power
method already give a very accurate approximation, as we
shall see in the next section. This, however, is not the case
when the dominant eigenvalue � is nearly degenerate, in
which case the convergence rate of the power method is
�
�2

� ��1, where �2 is the second largest eigenvalue in absolute
value. More precisely, the accuracy of our approximation is
related to the spectral gaps through the perturbation formula,
which, for undirected networks, takes the form �19�
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�� = �vTCv + �2

i=2

n
�v�i�Cv�2

� − �i
+ o��2� ,

where �i and v�i� �i�2� are the nondominant eigenvalues and
corresponding eigenvectors of A. When �1��2, the second
term becomes large, indicating that � is highly sensitive to
perturbations.

B. Adding or removing an arbitrary subgraph

Most of the interesting problems in the context of net-
works involve discrete changes, where A becomes A+B, and
the nonzero entries of B are finite and usually of the same
order of magnitude as the nonzero entries of A. If, however,
the modifications are limited to a small number of links in a
large network, then �B�2� �A�2, and the perturbation results
�5� and �6� would be valid with �C replaced by B. The other
approximations we have made are also likely to be valid, and
this is supported by the fact that Eq. �12� improves signifi-
cantly over Eq. �5� for the example networks discussed in
Sec. III. Equations �5� and �12� then become

�� � �1 =
uTBv
uTv

, �13�

�� � �1 + �2 �
uTBv
uTv

+
1

�

uTB2v
uTv

, �14�

and our approximation schemes for the spectral impact IB for
small but finite modifications are

ÎB =
1

�

uTBv
uTv

, �15�

Î̂B =
1

�

uTB�v + Bv/��
uTv

. �16�

Equation �15� is linear in B, and therefore the change can be
decomposed into the sum of elementary changes, as B
=
iBi, where Bi can represent, for example, a modification
of a single edge. The corresponding first-order approxima-
tion for the SI is obtained from the individual contributions,

as ÎB=
iÎBi
. On the other hand, Eq. �16� has a linear and a

quadratic dependence on B and linear superposition cannot
in general be used. However, if all the products of elemen-
tary changes BiBj are zero matrices �for example, if Bi’s rep-
resent the disconnected components of the subgraph�, then

Î̂B=
iÎ̂Bi
.

When the changes are limited to a small number of links,
we have a clear computational advantage of having highly
sparse matrix B. Also, including changes in the eigenvector
does not imply much computational burden. In fact, the extra
computational cost of using Eq. �14� instead of Eq. �13�
amounts to computing the extra vector uTB and projecting it
onto Bv �20�.

C. Modifying weight on single edge

Adding weight bij to directional edge �i , j� of a graph �21�
corresponds to changing the adjacency matrix from A to A

+Bij, where Bij is an n�n matrix containing all zeros except
for the �i , j� entry bij. The spectral impact IBij

can be approxi-
mated, using Eq. �15�, as

ÎBij
=

bijuiv j

�uTv
. �17�

This is equivalent to Eq. �2�, in the case bij =−aij.
The second-order approximation �16� introduces a correc-

tion only if a modification on a self-loop is introduced, as
�B2�ij is zero otherwise. Indeed, IBij

can be approximated at
the second order as

Î̂Bij
=

bijuiv j

�uTv
�1 + �ij

bii

�
� , �18�

where �ij is the Kronecker delta.
If the change is introduced bidirectionally, that is, bij is

added to the weight of edge �i , j�, and bji to edge �j , i�, then
the first- and second-order approximations to the SI become

ÎBij,ji
=

bijuiv j + bjiujvi

�uTv
�19�

and

Î̂Bij,ji
=

bijuiv j + bjiujvi

�uTv
+

bijbji�uivi + ujv j�
�2uTv

. �20�

In this case Eq. �20� can have nonzero correction term for
modification of weights on an edge other than a self-loop.
For undirected networks, modification must be bidirectional
and symmetric �bij =bji�, and the formulas become

ÎBij
=

2bijviv j

�
�21�

and

Î̂Bij
=

2bijviv j

�
+

bij
2 �vi

2 + v j
2�

�2 . �22�

Note that Eq. �22� always introduces a non-negative correc-
tion to the first-order approximation for modifications to un-
directed networks.

D. Removing a node

Removing node k in a graph corresponds to removing all
edges touching it. In this case, the entries of B are bij =
−aij��ik+� jk−�ik� jk� and the first-order approximation reads

Îk = �− 2 +
akk

�
�ukvk

uTv
, �23�

while the second-order one yields

Î̂k = �− 1 +
akk

�
−

akk
2

�2 +
1

�2

i=1

n

aikaki�ukvk

uTv
. �24�

In the case that there is no self-loop connecting node k with
itself, the above formulas simplify to
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Îk = − 2
ukvk

uTv
�25�

and

Î̂k = �− 1 +
1

�2

i=1

n

aikaki�ukvk

uTv
. �26�

The summation term in the last equation represents an im-
provement over the previous result, Eq. �3�.

If, furthermore, the network is undirected and un-
weighted, first and second-order approximations become

Îk = − 2vk
2 �27�

and

Î̂k = �− 1 +
dk

out

�2 �vk
2, �28�

where dk
out�
i=1

n aki is the out-degree of vertex k.
The last two equations show well that, in the case of

removing a node, first- and second-order approximations
yield rather different results, with the estimate from Eq. �27�
more than double that from Eq. �28�. This difference comes
from the fact that, in the case of removing node k, the kth
component of the new dominant eigenvector becomes zero,
regardless of its previous value, and thus the change in u and
v is not negligible.

III. APPLICATIONS

In this section, the accuracy of various approximations is
assessed using both synthetic and real-world graphs. The true
dominant eigenvalue and corresponding eigenvector are es-
timated in double precision using the MATLAB function eigs
�22� and compared to the estimates obtained by implement-
ing our approximation formulas.

As an example of artificial networks, the Erdös-Rényi
random graph �23� is used, with n=1000 nodes and the prob-
ability of connection p=0.01. The particular realization used
is labeled G1 for convenience and has 5004 undirected links,
without self-loops. The largest degree is dmax=20, the mini-
mum is dmin=2, and the average is dmean=10.01. The largest
three eigenvalues �in magnitude� of the corresponding adja-
cency matrix are computed to be �=11.0741, �2=−6.53518,
and �3=6.50196. The components of the eigenvector v are
shown in increasing order in Fig. 1�a�. We also analyze three
real-world networks, which we refer to as G2, G3, and G4 for
convenience. The basic properties of these networks are re-
ported in Table I, along with the pertinent references. G2 is a
biological example, G3 is a social interaction network, while
G4 can be regarded as an instance having both an engineering
and social character.

The impact on � of the removal of various subgraphs of
G1 is analyzed next: the results from the first- and second-
order approximations are plotted versus the actual SI. In Fig.
1�b�, the removal of edges is considered; the maximum re-
duction in � is about 0.1% and it is satisfactorily predicted
by both the first- and second-order formulas: the former has

a tendency of overestimating the change, while the latter is
more accurate. As expected, there are edges that have a
greater impact on � than others. In particular, the impact of
edge �i , j� is dictated by the components vi and v j of v, as
given in Eqs. �21� and �22�. The effect of removing a simple
motif is shown in Fig. 1�c�, where the 171 triangles occurring
in G1 are individually removed. The observed �� is higher in
this case, though the approximations are still satisfactory.
Figure 1�d� investigates the removal of nodes, comparing
Eqs. �27�, �28�, and �3�: while the first-order approximation
is off by a factor of about 2, the second-order formula with
the dk /�2 term is the most accurate. Note that for both the
first- and second-order estimates the plots are almost mono-
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FIG. 1. �Color online� Results for the Erdös-Rényi network G1.
�a� Eigenvector components sorted in the increasing order. The true
SI is plotted against its approximation �both in percentage� for the
removal of �b� edges, �c� triangles, and �d� nodes. The black plus
symbols correspond to the first-order approximation �15� and the
red �light gray� squares to the improved approximation �16�. In �d�
the blue �dark gray� circles correspond to the approximation in Ref.
�11�.

TABLE I. Examples of real-world networks.

G2, yeast protein interaction network �24�
2361 vertices, 13828 edges

dmin=1, dmean=5.86, dmax=65

�=19.4861, �2=16.1340, �3=14.3339

G3, network of e-mail interchanges �25�
1133 vertices, 5451 edges

dmin=1, dmean=9.62, dmax=71

�=41.4940, �2=33.9272, �3=30.0687

G4, U.S. power grida 4941 vertices, 6594 edges

dmin=1, dmean=2.67, dmax=19

�=7.4831, �2=6.6092, �3=5.5728

aThe data was retrieved from P. Tsaparas’ webpage on data sets and
codes for complex networks, at http://www.cs.helsinki.fi/u/tsaparas/
MACN2006/data-code.html.
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tonic, indicating that the relative ranking of nodes, edges,
and triangles defined by the SI are accurately estimated by
these formulas. Indeed, for a randomly chosen pair of nodes
or edges, the estimate is correct with probability close to one
�Table II�.

Figure 2 shows the eigenvector components, the real SI,
and the approximated SI for removing an edge and removing
a node from the real-world networks G2, G3, and G4. The
eigenvector components are shown in the order of increasing
magnitude; in several cases, the smallest components appear

to be rather small and fall below the axis limit on the figure.
The presence of components in the dominant eigenvector
spanning several orders of magnitude amounts to large dis-
crepancies in the importance of edges. When the removal of
edges is analyzed, both the first- and second-order approxi-
mations for the SI are satisfactory. On the other hand, if
removal of nodes is considered, the second-order formula of
Eq. �28�, containing a correction for the degree of the node,
yield results more accurate than Eq. �3�. In this case, the SI is
as large as −7%. The relative ranking based on SI is also

TABLE II. Predicting the relative ranking of edges and nodes based on SI. The numbers indicate the fraction of all possible pairs of edges
or nodes for which the relative ranking is correctly predicted by each approximation scheme. The local methods are based on the eigenvector
components estimated by the normalized degree �LM1�, the normalized sum of the neighbors’ degree �LM2�, and the normalized sum of the
degrees of the neighbors’ neighbors �LM3�.

Ranking of edges Ranking of nodes

Local Methods Local Methods

Networks
Eq. �13�

�%�
Eq. �14�

�%�
LM1
�%�

LM2
�%�

LM3
�%�

Eq. �13�
�%�

Eq. �14�
�%�

LM1
�%�

LM2
�%�

LM3
�%�

G1 99.34 99.95 90.20 96.63 98.04 99.59 99.94 93.79 96.81 97.86

G2 98.46 99.95 82.31 88.01 90.13 99.85 99.96 84.30 88.81 91.52

G3 98.96 99.97 85.08 91.40 93.85 99.86 99.95 87.65 91.88 94.64

G4 96.86 96.51 83.68 91.07 93.60 96.59 95.92 85.91 82.40 81.99
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FIG. 2. �Color online� Results for the three examples of real-world networks G2 �top row�, G3 �middle row� and G4 �bottom row� in Table
I. The left column ��a�, �d�, and �g�� shows the eigenvector components sorted in the increasing order. The middle column ��b�, �e�, and �h��
shows the true SI vs approximated SI for the removal of edges, while the right column ��c�, �f�, and �i�� is for the removal of nodes. The
meaning of the symbols is the same as in Fig. 1.
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accurately predicted for these real-world networks, as shown
in Table II. Note that increasing the order of approximation
improves the accuracy, except for the case of G4. For node
removals in G4, the rank prediction accuracy, although high
in general, falls slightly with the increasing order of approxi-
mation. This is due to relatively large fluctuation of the ap-
proximation error among different nodes �Fig. 2�i��, which is
a likely consequence of heterogeneity and hierarchical nature
of the power-grid network topology.

Since the spectral gap �−�2 mainly determines the sensi-
tivity of � to structural perturbations, it is directly related to
the accuracy of our approximation formulas. Indeed, the
larger the spectral gap, the better the approximation will gen-
erally be. Networks with large spectral gaps are known to be
homogeneous and well-connected, avoiding structural bottle-
necks �26�, and can also be characterized by having large
expansion constant �27,28�.

IV. APPROXIMATING SI USING LOCAL INFORMATION

In Sec. II, formulas for approximating the SI were given,
based on Eq. �15�. However, the knowledge of both the larg-
est eigenvalue � and its corresponding left and right eigen-
vectors u and v is required. Such information is in some
situations impractical or even impossible to obtain, since it is
equivalent to solving an eigenvalue problem for the adja-
cency matrix A, which requires knowing all the entries of A.

For a given set of links to be modified, however, our
approximation formulas only require—aside from a normal-
ization constant—a few components of u and v correspond-
ing to the nodes attached to these links. These u and v com-
ponents can be approximated by iterative methods. When
using the SI for ranking different subgraphs, such as single
edges or nodes, or pairs of edges or nodes, this approach can
be useful because the normalization constant does not affect
the ranking.

Assuming that the spectrum of A satisfies ���	 ��2�� . . .
� ��n�, one can adopt the power method �15–17� to solve for
the dominant eigenvalue � and its corresponding left and
right eigenvectors u and v. The starting point of this method
is a normalized vector v�0�, that in this case can be taken as

v�0� =
1
	n

�1,1, ¯ ,1�T. �29�

Then, for t=1,2 , . . ., until convergence, the following is iter-
ated:

y�t� = Av�t−1�, ��t� = �y�t��2, v�t� = y�t�/�y�t��2. �30�

The convergence of both the eigenvalue and eigenvector is
geometric, with rate O���2 /��t� �29�. This algorithm can be
straightforwardly adjusted for the computation of the left ei-
genvector u, and the same convergence rates apply. Although
other iterative schemes for the computation of the dominant
eigenvalue and the corresponding eigenvector are available,
the power method is used here since its iterations directly
highlight the local information of a graph.

Indeed, the first iteration of the power method gives the
degree, the number of connections that each node has, up to

a normalization constant. The kth component of u�1� is pro-
portional to the in-degree of node k, dk

in=
i=1
n aik, while the

kth component of v�1� scales with the out-degree of the same
node, dk

out=
i=1
n aki. If the graph is undirected and un-

weighted, the kth component of both u�1� and v�1� are propor-
tional to the number of direct neighbors that node k has
�counting itself, if a self-loop is in place�.

The second iteration of the power method returns infor-
mation about the number of connections that these neighbors
have. For an undirected unweighted graph, the kth compo-
nent of u�2� and v�2� is proportional to the sum of the degrees
of the direct neighbors �where the same node can be counted
several times, and node k itself is always included in the
count�. If the graph is directed or weighted, the proper
weights need to be added and the directions of the connec-
tions considered. Subsequent iterations provide better ap-
proximations of the kth eigenvector component, involving
larger neighborhood of node k.

Combing these with Eq. �15�, we obtain successive ap-
proximations to the SI. For edge �i , j� in an undirected un-
weighted network, for example, the first two iterations give

ÎBij

�1�  di
indj

out �31�

ÎBij

�2�  �

k=1

n

akidk
in��


k=1

n

ajkdk
out� . �32�

Figure 3 shows the results of the local computation for the
Erdös-Rényi graph G1. Similar results can be obtained for the
networks G2, G3, and G4, which allow accurate prediction of
edge-and node-ranking, as shown in Table II. Analogously to
the effect of the order of approximation, increasing the num-
ber of iterations for the local method improves the accuracy
for all cases, except for G4 �due to the same large fluctuation
of the approximation error among different nodes�. The ac-
curacy of this local approximation also depends on the ratio
��2 /��, since it dictates the convergence rate of the method.

V. PERTURBATION OF THE GRAPH LAPLACIAN

Perturbation results, based on either global or local infor-
mation, can analogously be derived for eigenvalues and
eigenvectors associated with the graph Laplacian L, defined
as L=D−A, where D is the diagonal matrix of node in-
degrees. For simplicity, only connected and undirected
graphs are considered, so that the associated graph Lapla-
cians are positive-semidefinite matrices. The spectrum of L is
assumed to satisfy

0 = 
1 � 
2 � 
3 � . . . � 
n−1 � 
n, �33�

so that 
2 and 
n are nondegenerate. The second smallest
eigenvalue, 
2, and the largest one, 
n, are often used to
characterize properties of the underlying graph. In particular,

2 is known as the algebraic connectivity of the graph �30�
and quantifies the connectedness of the graph �
2=0 if the
graph is disconnected�. The algebraic connectivity, as well as
the eigenratio 
2 /
n, are closely related to the stability of
synchronized states in coupled dynamical systems �31,32�.
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Denote by x and y the normalized eigenvectors related to

2 and 
n, respectively,

Lx = 
2x, Ly = 
ny, �x�2 = �y�2 = 1. �34�

If an arbitrary subgraph �assumed to be symmetric and with
no self-loop� is added to or removed from the original graph,
then the adjacency matrix changes from A to A+B. The
change in 
2 and 
n can then be approximated, at the first
order, by

�
2 � 

i�j

bij�xi − xj�2 �35�

and

�
n � 

i�j

bij�yi − yj�2. �36�

Combining the two equations above and neglecting terms
containing more than one � �either �
2 or �
n� the change
in the eigenratio r=
2 /
n is predicted by

�r �
1


n
2


i�j

bij�
n�xi − xj�2 − 
2�yi − yj�2� . �37�

Similarly to the formula for the dominant eigenvalue of A,
the above equations can be adopted to develop strategies for
targeting the network evolution toward some desired state,
for example, to enhance �or weaken� the network synchroni-
zability. Our formalism can also be extended to other spectral
quantities.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have introduced the concept of spectral
impact of an arbitrary link modification in a network as the
relative change in the largest eigenvalue of the adjacency
matrix induced by the modification. Based on the standard
perturbation method and an approximation for the second-
order term, we obtained improved approximation formulas
for the spectral impact that requires only the most dominant
eigenvalue of the original network and its left and right
eigenvectors. Using the Erdös-Rényi random graph, as well
as real-world examples of large complex networks from bio-
logical, social, and technological applications, we confirmed
the accuracy of the formulas for the addition and/or removal
of nodes, links, and triangles. We have also shown that the
first iteration of a local approximation scheme based on the
power method is equivalent to using the node �or subgraph�
degree for ranking, and that further iterations quickly im-
prove the accuracy by incorporating the connectivity struc-
ture of larger neighborhood of the node �or subgraph�. The
analysis leading to the approximation formulas readily ap-
plies to the spectrum of other relevant matrices associated
with the network, such as the Laplacian matrix treated briefly
in this paper and the biased adjacency matrix studied in Ref.
�33�.

Some problems on the approximation schemes still re-
main open. How does the network topological structures,
such as the small-world, scale-free, and modular structures,
affect the accuracy of the approximations? More generally,
how does the robustness of the network with respect to its
spectral properties depend on the network structure, and can
it be used to classify networks, similarly to the existing spec-
tral classification �26�? How can we appropriately measure
the “smallness” of perturbation B to predict the accuracy? It
is also important to extend our method to the case of degen-
erate dominant eigenvalues, which may arise when the net-
work evolved under constraints or under pressure to optimize
its functions �34,35�.

Our results have several potential applications for large
networks whose performance depends on their spectral prop-
erties. The approximation schemes may be used in a damage
control strategy for such networks, in which sudden struc-
tural damage that cannot be immediately fixed, such as the
removal of multiple edges or nodes, is compensated by
changes in other parts of the network �see Ref. �36� for an
example of such a compensatory perturbation in a different
context�. They may also be used to develop gradient-descent-
like algorithms to solve the problem of designing networks
that satisfy specific spectral �and thus dynamical� properties
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FIG. 3. �Color online� Convergence of local SI approximation
for edge removal in the Erdös-Rényi network G1. �a� The eigenvec-
tor components sorted in the increasing order of their corresponding
values computed globally �red �light gray� line�. LM1 denotes the
approximation by the normalized degree �black cross symbols�,
while LM2 denotes the approximation by the normalized sum of the
degrees of the neighbors �blue �dark gray� dots�. �b� The SI for edge
removal estimated using the approximations of the eigenvector in
�a�, showing quick convergence to the SI computed using the glo-
bally computed eigenvector. The first-order formula �21� was used
to estimate the SI.
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�37–39�, or to develop efficient updating schemes for
spectrum-based statistics of evolving networks, similar to
those for local statistics reported in Ref. �12�. The ranking of
subgraphs, or motifs, according to the spectral impact in a
given network and for a selected eigenvalue �not necessarily
the largest� gives rise to interesting questions: how does this
ranking depend on the subgraph, the choice of the eigen-
value, and local and global properties of the network? Our
improved formula reflects the fact that there is a nonlinear
effect: the SI of the union of two subgraphs is not simply the
sum of their individual SI. How does this nonlinear effect
correlate with topological structures such as communities?

With the tools developed in this paper, we wish to tackle
some of the above open problems and applications in our
future work.
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